Enhanced activation of axonally transported stress-activated protein kinases in peripheral nerve in diabetic neuropathy is prevented by neurotrophin-3.

نویسندگان

  • A Middlemas
  • J-D Delcroix
  • N M Sayers
  • D R Tomlinson
  • P Fernyhough
چکیده

The objective was to determine whether stress-activated protein kinases (SAPKs) mediated the transfer of diabetes-induced stress signals from the periphery to somata of sensory neurons. Thus, we characterized axonal transport of SAPKs in peripheral nerve, studied any alteration in streptozotocin (STZ)-diabetic rats and examined effects of neurotrophin-3 (NT-3) on diabetes-induced events. We demonstrate that c-jun N-terminal kinase (JNK) and p38 are bidirectionally axonally transported at fast rates in sciatic nerve. In STZ-diabetic rats the relative levels of retrograde axonal transport of phosphorylated (activated) JNK and p38 were raised compared with age-matched controls (all data are in arbitrary units and expressed as fold increase over control: JNK 54-56 kDa isoforms, control 1.0 +/- 0.19, diabetic 2.5 +/- 0.26; p38, control 1.0 +/- 0.09, diabetic 2.9 +/- 0.52; both P < 0.05). Transport of total enzyme levels of JNK and p38 and phosphorylated extracellular signal-regulated kinase (ERK) was not significantly altered and anterograde axonal transport of phosphorylated JNK and p38 was unaffected by diabetes. The transcription factor ATF-2, which is phosphorylated and activated by JNK and p38, also exhibited elevated retrograde axonal transport in STZ-diabetic animals (control 1.0 +/- 0.07, diabetic 3.0 +/- 0.41; P < 0.05). Treatment of STZ-diabetic animals with 5 mg/kg human recombinant NT-3 prevented activation of JNK and p38 in sciatic nerve (phosphorylated JNK, control 1.0 +/- 0.09, diabetic 1.95 +/- 0.35, diabetic + NT-3 1.09 +/- 0.12; P < 0.05 diabetic versus others; phosphorylated p38, control 1.0 +/- 0.16, diabetic 4.7 +/- 0.9, diabetic + NT-3 1.19 +/- 0.18; P < 0.05 diabetic versus others). The results show that JNK and p38 are transported axonally and may mediate the transfer of diabetes-related stress signals, possibly triggered by loss of neurotrophic support, from the periphery to the neuronal soma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat shock protein 90 in retinal ganglion cells: association with axonally transported proteins.

The mRNAs for heat shock protein 90 (HSP90) are found at highest levels (differentially expressed) in the primate retinal fovea, the region of highest visual acuity, compared to the peripheral retina. HSP90 expression and retinal associations were analyzed by immuno-localization, in situ hybridization, and western analysis. Retinal ganglion cells (RGCs) express much of the HSP90 mRNA present in...

متن کامل

Targeting Apoptosis Signalling Kinase-1 (ASK-1) Does Not Prevent the Development of Neuropathy in Streptozotocin-Induced Diabetic Mice

Apoptosis signal-regulating kinase-1 (ASK1) is a mitogen-activated protein 3 kinase (MAPKKK/MAP3K) which lies upstream of the stress-activated MAPKs, JNK and p38. ASK1 may be activated by a variety of extracellular and intracellular stimuli. MAP kinase activation in the sensory nervous system as a result of diabetes has been shown in numerous preclinical and clinical studies. As a common upstre...

متن کامل

Histopathological and behavioral evaluations of the effects of crocin, safranal and insulin on diabetic peripheral neuropathy in rats

Objectives: Crocin and safranal, the major constituents of saffron, exert neuroprotective effects. In the present study, we investigated the effects of crocin and safranal  (alone or in combination with insulin) on peripheral neuropathy in diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (i.p.) injection of 60 mg/kg of streptozotocin (STZ) and confirmed by blood glu...

متن کامل

A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy.

The onset of diabetic neuropathy, a complication of diabetes mellitus, has been linked to poor glycemic control. We tested the hypothesis that the mitogen-activated protein kinases (MAPK) form transducers for the damaging effects of high glucose. In cultures of adult rat sensory neurons, high glucose activated JNK and p38 MAPK but did not result in cell damage. However, oxidative stress activat...

متن کامل

Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes.

Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 126 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2003